414 research outputs found

    Bi-differential calculus and the KdV equation

    Full text link
    A gauged bi-differential calculus over an associative (and not necessarily commutative) algebra A is an N-graded left A-module with two covariant derivatives acting on it which, as a consequence of certain (e.g., nonlinear differential) equations, are flat and anticommute. As a consequence, there is an iterative construction of generalized conserved currents. We associate a gauged bi-differential calculus with the Korteweg-de-Vries equation and use it to compute conserved densities of this equation.Comment: 9 pages, LaTeX, uses amssymb.sty, XXXI Symposium on Mathematical Physics, Torun, May 1999, replaces "A notion of complete integrability in noncommutative geometry and the Korteweg-de-Vries equation

    Differential Calculi on Associative Algebras and Integrable Systems

    Full text link
    After an introduction to some aspects of bidifferential calculus on associative algebras, we focus on the notion of a "symmetry" of a generalized zero curvature equation and derive Backlund and (forward, backward and binary) Darboux transformations from it. We also recall a matrix version of the binary Darboux transformation and, inspired by the so-called Cauchy matrix approach, present an infinite system of equations solved by it. Finally, we sketch recent work on a deformation of the matrix binary Darboux transformation in bidifferential calculus, leading to a treatment of integrable equations with sources.Comment: 19 pages, to appear in "Algebraic Structures and Applications", S. Silvestrov et al (eds.), Springer Proceedings in Mathematics & Statistics, 202

    Differential Calculi on Commutative Algebras

    Full text link
    A differential calculus on an associative algebra A is an algebraic analogue of the calculus of differential forms on a smooth manifold. It supplies A with a structure on which dynamics and field theory can be formulated to some extent in very much the same way we are used to from the geometrical arena underlying classical physical theories and models. In previous work, certain differential calculi on a commutative algebra exhibited relations with lattice structures, stochastics, and parametrized quantum theories. This motivated the present systematic investigation of differential calculi on commutative and associative algebras. Various results about their structure are obtained. In particular, it is shown that there is a correspondence between first order differential calculi on such an algebra and commutative and associative products in the space of 1-forms. An example of such a product is provided by the Ito calculus of stochastic differentials. For the case where the algebra A is freely generated by `coordinates' x^i, i=1,...,n, we study calculi for which the differentials dx^i constitute a basis of the space of 1-forms (as a left A-module). These may be regarded as `deformations' of the ordinary differential calculus on R^n. For n < 4 a classification of all (orbits under the general linear group of) such calculi with `constant structure functions' is presented. We analyse whether these calculi are reducible (i.e., a skew tensor product of lower-dimensional calculi) or whether they are the extension (as defined in this article) of a one dimension lower calculus. Furthermore, generalizations to arbitrary n are obtained for all these calculi.Comment: 33 pages, LaTeX. Revision: A remark about a quasilattice and Penrose tiling was incorrect in the first version of the paper (p. 14

    Differential Geometry of Group Lattices

    Full text link
    In a series of publications we developed "differential geometry" on discrete sets based on concepts of noncommutative geometry. In particular, it turned out that first order differential calculi (over the algebra of functions) on a discrete set are in bijective correspondence with digraph structures where the vertices are given by the elements of the set. A particular class of digraphs are Cayley graphs, also known as group lattices. They are determined by a discrete group G and a finite subset S. There is a distinguished subclass of "bicovariant" Cayley graphs with the property that ad(S)S is contained in S. We explore the properties of differential calculi which arise from Cayley graphs via the above correspondence. The first order calculi extend to higher orders and then allow to introduce further differential geometric structures. Furthermore, we explore the properties of "discrete" vector fields which describe deterministic flows on group lattices. A Lie derivative with respect to a discrete vector field and an inner product with forms is defined. The Lie-Cartan identity then holds on all forms for a certain subclass of discrete vector fields. We develop elements of gauge theory and construct an analogue of the lattice gauge theory (Yang-Mills) action on an arbitrary group lattice. Also linear connections are considered and a simple geometric interpretation of the torsion is established. By taking a quotient with respect to some subgroup of the discrete group, generalized differential calculi associated with so-called Schreier diagrams are obtained.Comment: 51 pages, 11 figure

    Soliton equations and the zero curvature condition in noncommutative geometry

    Get PDF
    Familiar nonlinear and in particular soliton equations arise as zero curvature conditions for GL(1,R) connections with noncommutative differential calculi. The Burgers equation is formulated in this way and the Cole-Hopf transformation for it attains the interpretation of a transformation of the connection to a pure gauge in this mathematical framework. The KdV, modified KdV equation and the Miura transformation are obtained jointly in a similar setting and a rather straightforward generalization leads to the KP and a modified KP equation. Furthermore, a differential calculus associated with the Boussinesq equation is derived from the KP calculus.Comment: Latex, 10 page

    Bicomplexes and Integrable Models

    Full text link
    We associate bicomplexes with several integrable models in such a way that conserved currents are obtained by a simple iterative construction. Gauge transformations and dressings are discussed in this framework and several examples are presented, including the nonlinear Schrodinger and sine-Gordon equations, and some discrete models.Comment: 17 pages, LaTeX, uses amssymb.sty and diagrams.st

    Bicomplexes, Integrable Models, and Noncommutative Geometry

    Full text link
    We discuss a relation between bicomplexes and integrable models, and consider corresponding noncommutative (Moyal) deformations. As an example, a noncommutative version of a Toda field theory is presented.Comment: 6 pages, 1 figure, LaTeX using amssymb.sty and diagrams.sty, to appear in Proceedings of the 1999 Euroconference "Noncommutative geometry and Hopf algebras in Field Theory and Particle Physics

    Dynamical Evolution in Noncommutative Discrete Phase Space and the Derivation of Classical Kinetic Equations

    Full text link
    By considering a lattice model of extended phase space, and using techniques of noncommutative differential geometry, we are led to: (a) the conception of vector fields as generators of motion and transition probability distributions on the lattice; (b) the emergence of the time direction on the basis of the encoding of probabilities in the lattice structure; (c) the general prescription for the observables' evolution in analogy with classical dynamics. We show that, in the limit of a continuous description, these results lead to the time evolution of observables in terms of (the adjoint of) generalized Fokker-Planck equations having: (1) a diffusion coefficient given by the limit of the correlation matrix of the lattice coordinates with respect to the probability distribution associated with the generator of motion; (2) a drift term given by the microscopic average of the dynamical equations in the present context. These results are applied to 1D and 2D problems. Specifically, we derive: (I) The equations of diffusion, Smoluchowski and Fokker-Planck in velocity space, thus indicating the way random walk models are incorporated in the present context; (II) Kramers' equation, by further assuming that, motion is deterministic in coordinate spaceComment: LaTeX2e, 40 pages, 1 Postscript figure, uses package epsfi

    On non commutative sinh-Gordon Equation

    Get PDF
    We give a noncommutative extension of sinh-Gordon equation. We generalize a linear system and Lax representation of the sinh-Gordon equation in noncommutative space. This generalization gives a noncommutative version of the sinh-Gordon equation with extra constraints, which can be expressed as global conserved currents.Comment: 7 Page
    • …
    corecore